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Abstract 

Leo, .I., A general context-free parsing algorithm running in linear time on every LR(k) grammar 
without using lookahead, Theoretical Computer Scic 2s; 82 :‘13?1) ;tLiiti 

A new general context-free parsing algorithm is pre<.ented which runs in linear time and space 
on every LR( k) grammar without using any lookahead and without making use of the LR property. 
Most of the existing implementations of tabular parsing algorithms, including those using look- 

ahead, can easily be adapted to this new algorithm without a noteworthy loss of efficiency. For 
some natural right recursive grammars both the time and space complexity will be improved from 
n( n’) to O(n). This makes this algorithm not only of theoretical but probably of practical interest 
as well. 

General context-free parsing and recognition methods are used in applications 
for which the known linear-time methods are too restricted. he main areas where 
such general methods are extensively used are systems for the processin 

languages, speech recognition, and in compiler generating systems. 
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general parsing methods make use of backtracking or they are tabular in nature. 
None of them is completely satisfactory. Those making use of backtracking have 
the advantage of running in linear space, but their time complexity can be exponential 
in the length of the input for some grammars. (For a rather large class of grammars, 
however, even the simple topdown backtrack parsers run in linear or low polynomial 

time [9].) 
On the other hand, the tabular algorithm of Earley [3,4] and the improved tabular 

algorithm of Graham, Harrison and Ruzzo [S, 61 run for arbitrary context-free 
grammars in time O(lp3) and space O(n”), where n is the length of the input. For 
unambiguous grammars they run in time and space O(d) and for non-right recursive 
LR(k) grammars in linear time and space even if no lookahead is used. For some 
right recursive LR(k) grammars however, (such as S+ aS 1 A.), they need a look- 
ahead of k to obtain a linear time and space performance. If not enough lookahead 
is used, the time complexity, and, what is even worse, the space complexity for such 
grammars is fl(n’). Also for non-LR(k) grammars right recursion is sometimes the 
reason for a bad performance of these parsers. As certain syntactic structures in 
both programming languages and natural languages are more naturally described 
by right recursive constructs, this is a serious weakness of these methods. 

In his thesis, Earley [3, p. 601 conjectured that by a slight change in the algorithm 
a linear-time performance for every LR(k) grammar can be obtained without the 
use of lookahead. In this paper we will show that his conjecture is correct. Since 
the LR property itself plays no role for the steps taken by our algorithm, the 
LR(k)-ness does not have to be determined. Furthermore, the modification does 
not lead to a noteworthy loss of efficiency for any grammar, and the resulting 
algorithm can be combined easily with lookahead. 

We use the following notational conventions. Let G = ( V, 2, P, S) denote an 
arbitrary context-free grammar., where V is the vocabulary, C the set of terminal 
symbols, P a finite set of productions, and S the start symbol. V-C is the set of 
non-terminal symbols, denoted by N. Let w = a, . . . a,, with ai E C (1 s i G n) denote 
the input string to be parsed or recognized. The substring ai+l . . . aj is denoted as 
Wii. Instead of Woj we also write wj. 

A recognizer is a procedure to decide for every w in C* whether or not w E L(G). 
A parser is a recognizer which yields for every w E L(G) the derivation(s) of w in 
one form or another. 

Before we present our algorithm, we first give a brief description of the recognition 
algorithm of Cocke, asami, and Younger (the C algorithm) [7,8, 121, the 

algorithm of Earley [ 41, the algorith arrison and Ruzzo [5,6], 
omita’s algurithm [ 111. Except , they are ali dyna 

mming methods. 
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The CKY-algorithm only works for grammars in Chomsky normal form. It builds 
an upper triangular matrix (Q) in which a non-terminal A is put into tii (0 c i <j s n) 

iff A$w,. 

Earley’s method works for every context-free grammar, so no grammar transforma- 
tions are required. In its simplest form, where no lookahead is used, it successively 
builds lists IO, . . . , I, containing items of the form [A + a.& i] where A + ap is a 
production and . is a symbol not in K When list 4 is completed, it contains item 
[A+ cy.p, i] iff S$ WiAy for some y E V* and a$ wO. (The formulation in terms 
of lists can be regarded as a suitable representation for a recognition matrix.) 

The algorithms of Graham et al. [S] (except for their theoretically interesting, but 
impractical 0( n3/log n) algorithm) differ from Earley’s in three respects: the order 
in which the items are computed, the choice of the data structure, and the precompu- 
tation of empty and chain derivations. These changes often mean a considerable . 
improvement of the constant factors, but the asymptotic time and space complexities 
are unchanged. 

Tomita’s algorithm works for every cycle-free context-free grammar. It is based 
on LR parsing. Multiple entries in the LR parsing table are handled by pseudo- 
parallel parsing in different directions. By using certain sharing techniques, the 
parsing time and space are polynomial, although not always O(n”).’ 

For recognition purposes only, the space complexity of Earley’s algorithm could 
be improved in some cases by removing all complete items (i.e. items with the dot 
at the end of a production) in 4 after this list has been built, but in general this 
would make parsing harder. Nevertheless, as we will show, some of the complete 
items contributing to a parse can easily be reconstructed afterwards in a deterministic 
way. Moreover, some complete items need not be generated at all while building 
the lists IO, . . . , I,,. For certain right recursive grammars this will speed up the 
recognition time by a factor n. How this can be accomplished is sketched in the 
fo?owing. 

For reasons of presentation we shall, for the moment, assume that the grammar 
does not t.ontain non-terminals which can only produce the empty string h as 
terminal word. 

Initialization: Let I0 be the set of all items of the form [A + a$, 0] with A + cup a 
production in P, such that S+Aq for some 7 t: V*, and a 3h. 

Now assume that the sets IO,. . . , I&, have already been constructed, and set 1’ 

is still empty. 

Scanner: First, for each item [ + a! .QjSy, i] E h-, such that S 3 A, we ad 

[A+ a@ .y, i] to Ij. 

’ It can be proved that the time and space complexity of Tomita’s algorithm is O(n’) where 1 is the 
maximum length of the productions of the grammar, i.e. I = maxA_+aE ,, Ig( Aa ). 
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Completer: Next, for each complete item of the form [A + ye, i] in or newly added 
to 4, we add, if it exists, the topmost complete item on the deterministic reduction 

path above [A + y., i] to Ij (see Definition 2.1). If it does not exist, then for each 
item [B+ cy .A&, k] E Ii such that S 3 A, we add [B+ aAS.r), k] to 4. 

Predictor: Finally, for each item [A + cu.B& i] E 4, we add to 4 all items of the form 
[C --) y.& j] with C + ye E P, y%, and B+ Cr, for some q E V*. 

efinition 2.1. An item is said to be on the deterministic reduction path above [A + 
y., i] if it is [B + QA., k] with [B + a.A, k] being the only item in Ii with the dot 
in front of A, or if it is on the deterministic reduction path above [B + cwA., k]. An 
item on such a path is called the topmost one if there is no item on the deterministic 
reduction path above it. 

On a (non-empty) deterministic reduction path there always exists a topmost item 
if S $ S is impossible. The easiest way to avoid problems in this respect is to 
augment the grammar with a new start symbol S’, i.e. adding the rule S’+ S to the 
grammar, with S’ not in V, and letting S’ be the new start symbol. 

To determine the topmost item on a deterministic reduction path we do not always 
have to construct the complete reduction path. Suppose [C + S., m] is the topmost 
item on the deterministic reduction path above [A + y., i], and [B + fl., k] is some 
other item on this path. Then we add to set Zk a so-called transitive item [C + 
a., B, m]. Subsequently, if an item of the form [B + p’., k] is added to some set I”‘, 
we can directly add [C + 8.) m] to Ij$. 

When the sets IO,. . . , I,, have been constructed, then the input w is in L(G) iff 
[S’+ S, 0] is in I, (or, if the grammar is not augmented, some item of the form 

CS + cy., 0] is in 1”). 
If we apply the construction just given to certain LR(k) grammars with non- 

terminals which can only produce h, (like S + aSE 1 A. E + h), the time and space 
complexities remain fl(n’). Therefore, for the general case, we will treat, in the 
construction of the deterministic reduction paths, items of the form [A + cy.B& i] 
for which S can only produce h as terminal word just like items of the form 
[A + a.& i]. (If 6 is empty, then we also say that 8 produces empty.) 

We illustrate the algorithm described here with an example. 

. consider the grammar 

-WC6 1 A. and input ca”b”’ (n 2 m). 
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Earley’s algorithm builds: 

Io={[S-,.aS,O],[S-hC,O], [S-, C.,O],[C+.aCb,O], [C-*.,0]} 
for 1SiSn; 

Ii=([S-*a.S,i-l],[S-*aS.,i-l],[C-,a.Cb,i-l],[C3aC.6,i-l], 

[S+aS.,i-2],[S+aS.,i-3],..., [S+aS.,O], 

[S + .aS, i], [S +.C, i], [S+ C., i],[C+.aCb, i],[C-,., i]) 
for nCi<n+mm; 

li = {[C + aCb., 2n - i], 
[C + aC.b, 2n - i - 11, [S* C., 2n - i], 

[S+nS.,2n-i- l],[S+aS.,2n-i-21,. . .,[S+aS.,O]}. 

Our algorithm builds: 

~~={[S-,.aS,O],[S~.C,O],[S~C.,O],[C-,.aC6,O],[C~.,O]} 
for lGiGn* 3 

I, =([S+ a.S, i- l],[S+aS., i-l],[C+a.Cb, i-l],[C+aC.b, i-l], 

[S+ as., 01, 
[S+.aS, i], [S +.C, i],[S+C., i],[C+.aCb, i],[C+., q, 

[S+ as., S, 0)) 
for n<i<ni-mm; 

I, = ([C + aCb., 2n - i], 
[C+aC.b,2n-i-l],[S+C.,2n-i],[S+oS.,Oj). 
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#scanner 

#completer 
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#initia!ization 

#scanner 

#completer 

#predictor 
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We see that instead of adding [S*aS.,i-21, [S+aS.,i-3],...,[S+aS.,l] to 
the sets Ii (l-i < 5 n) as in Earley’s method we only add the transitive item 
[S-, as., S, 01. 

Note that for certain LR languages, like for instance the language {a’%” 1 n 3 m) 
considered in this example, every LR( k) grammar is right recursive, and that Earley’s 
method runs for each of these LR( k) grammars in time and space 0( n’) if insufficient 
lookahead is used. 

The algorithm loosely described in this section runs in linear time and space for 
every LB(k) grammar, without using any lookahead. In the next section we give a 
more precise description of our algorithm. 

. Let G = ( V, 2, P, S) be a CF6, an . be a symbol not in V. If 

A+qSP, then A -9 a$ is called a dotted rule, + a./3 with i an integer 

representing an index in the input string is called an hem, an 
B E IV is called a transitive item. 

e item is called complete. 

If p rt k, then the item is called incomplete. If p can owy produce the empty string 
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h as a terminal word, then we call the item quasi-complete. Otherwise we call it 
strongly incomplete. (Note that the definition is such that complete items are also 
quasi-complete.) 

The next two definitions are related to those found in [S] and [6]. 

nition 3.3. Let G = ( V, Z, P, S) be a CFG, let Q be a set of items, and let X E V. 

Define OXX={[A-,CYXP.~,~]I[A~~~.X~~,~]EQ,S~A}. 

nition 3.4. Let G = ( V, Z, P, S) be a CFG, let R C_ V - 2, and j an index. Define 
PREDICTj(R)={[C~r.S,j]IC-*y5E P, ~“h, and B%Cq for some BE R and 

some 71 E V*}. 

As stated in the previous section, the existence of a topmost item on a deterministic 
reduction path is not always guaranteed in case S $ S. Therefore, in the next 
algorithm the grammar has been augmented with S’ as the new start symbol. 

agorithm 1 
begin 

IO := PREDICT,( { S’}); 
for j := 1 to n 

do 
lj := lj-1 X aj; 

for each item of the form [A -9 y., i] in or newly added to Ij 
do 

T_UPDATE( IO,. . . , Ii, A); 

if Ii contains a transitive item of the form [B + P., A, k] 

then Ij := 1ju{[B+P*9 klI 
:= I, u 1, x A 

Ij := I, U PREDICTj({A 1 [B + amA@, k] E !i}) 

S’+ S.,O] is in I,, t accept else reject fi 

T_UPDATE( IO,. . . , Ii, A): 

itive item of the form [B + p., A, k] 

t_ rule := B + p.; t_pos := k 

ly one item of the form [B-, CLAP, k] an 

+ aA&; t_pos := k; 

Ii := Ii U (1 t-rule, A, t-/IO.?+]) 

. 
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emar . (1) The two global variables t-rule and t_pos used in the procedure 
T-UPDATE do not have to be initialized. 

(2) If in Algorithm I the o-part of the inner for-loop is replaced by Ij := Ij v Ii x A, 
then the sets Ij are exactly the same as in Earley’s algorithm. 

(3) For some grammars Algorithm 1 requires more space than Earley’s algorithm. 
For example, for S + AS6 1 h. A + aA 1 c. and input (ac)“b” the sets 1’ built by 
Earley and by Algorithm 1 are equal with respect to the “normal” items, but in our 
method the sets lZi+l (0~ i < n) additionally contain the transitive item [A + 
aA., A, 2i]. However, if we do not add a transitive item [A + aB., B, k] to Ii if Ii 
also contains [A + a.B, k], then the total number of items and transitive items added 
by our algorithm never exceeds the number of items added by Earley’s. The required 
modification of Algorithm 1 is simple. Note that adding a transitive item may speed 
up the recognition time, but not adding it will not affect the correctness of the 
algorithm. 

(4) In the description of the algorithm we have abstracted from the representation 
of the sets I’m By elementary list handling techniques, the operations and tests in 
the algorithm can be performed without extensive searches. A rather good choice 
for the data structure for 4 is to use for each X in V a list containing all items in 
I’ of the form [A + CLXP, i], and if present [A + CL, X, k]. The completed items in 
Ij could be kept in another list. In [5] a few other efficient implementations are 
discussed, which are applicable to our algorithm as well. 

3.1. Parsing and reducing 

Up to now we have only considered context-free recognizers, but normally we 
are more intere(;:ped in parsers. After the sets IO, . . . , I, have been built, and the 
sentence recognized, we could either construct the parses directly, or we could 
transform the sets IO, . . . , I,, to the “normal” reduced ones of Earley, i.e. transform 

them such that afterwards [A + a$, i] E li iff Sa H?iAy for some y E V* and cy 3 Wii 
and Pr” Win (the so-called useful items). This transformation has the advantage 
that other routines taking the “normal” sets as input need no modification, but the 
disadvantage that for certain ambiguous grammars, like 

S + AA’. A+aA 1 a. A’-, _J4’ 1 6. 

the space requirements grow from linear to quadratic. 
The transformation can be done by marking the useful items in a similar way as 

described in [5]. The difference with the reduction algorithm in [5] is that we still 
have to add the usefu! items that have been omitted. or arbitrary grammars the 
transformation time is at worst comparable to that required for red 
mal” lists of Earley; for una 
able to the time required b 
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heoretical results 

Most of the results given in this section are not really difficult to prove, but the 
proofs are sometimes long and tedious. Therefore, a sketch of the proof is given 
only in those cases where the results are not intuitively plausible. 

.I. Algorithm 1 accepts w iff w E L(G). 

The following lemma is useful for the proof of this theorem. 

.2. (a) Algorithm 1 adds a strongly incomplete item [A- a.& i] to I” iff 
S$ wiAy for some y E V* and cu 3 wii. 

(b) rf a transitive item [B + /3., C, m] is added to LA for some k <j, then for each 
y~V*;A~N;icrn,if 

(i) S$ w,Ay, 
(ii) A$ wikC, 

Proof. Parts (a) and (b) can be proved simultaneously by induction on j. Cl 

Thus the sets built by Algorithm 1 and by Earley’s do not differ with respect to 
the strongly incomplete items. 

Theorem 4.3. The order cf magnitude of the time and space complexity of Algorithm 
1 is for no grammar worse than t/rat of Earley’s algorithm. 

The use of lookahead in our algorithm might lower the order for certain 
(ambiguous) grammars. For example, for the grammar S + Ab. A-, aA 1 aaA 1 A., 

Earley’s algorithm and ours without lookahead both take time and space n(n’), 
whereas with a lookahead of 1 they both take time and space O(n). 

In [Z] the class of LR-regular grammars was introduced. It forms a direct generaliz- 
ation of the LR(k) grammars. Instead of using only a bounded lookahead to 
determine the handle in a right sentential form, a regular lookahead is used. As we 
will show, Algorithm 1 runs in linear time even for this extension of the class of 
the LR( k) grammars. 

A partition n = {B,, . . . , B,,,} of C” is called regular if all the sets Bi 
B,,,} is called a partition of C* if the union of the Bj’s is equal 

to E*, and the Bi’s are mutually disjoint.) 

Let G = ( V, 2, P, S) 
‘possible in G. G is L 

be a reduced context-free grammar such that 
(n) with T = {B,, . . . , B,} some partition of 

w, w’,xE~*; LY, c$,~J’E V*; A, A’E N, if 
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(ii) S $R cu’A’x =s~ a’p’x = ~rllij~‘, 
(iii) w = w’(mod n), 

then (A-*p,Ig(rrp))=(A’-,B’,Ig(a’P’)). 
A context-free grammar 

partition 7i~ of C*. 

Every LR(k) grammar is 

is called LR-regular if it is LR(rr) for some regular 

an LR(rr) grammar with the regular partition 

v~Ck}u{{~}~~~Z*,andlg(u)~k}. 

l’dow we state our main theorem. 

Theorem 4.6. Algorithm 1 runs in linear time and linear space for every LR-regular 
grammar. 

Proof (sketch). First we show, in the next three lemmas, that for LR-regular gram- 
mars the number of items and the number of transitive items in each set 1’ is bounded 
by some constant. It follows that the space complexity is linear in the length of the 
input. Using this result, it then follows from Lemma 4.10 that the time complexity 
is linear as well. 

Lemma 4.7. For eoery LR-regular grammar, there exists a constant c such that the 
number o~~strongly incomplete items in each set Ij is at most c. 

Proof. Without loss of generality we assume that the partition 7r = {B,, . , . 9 B,} of 
Z* is a left congruence (i.e. for every x, y, z in Z*, x = y (mod n) implies zx = 
zy (mod 7r)). Now let A-, Pr be a production in P for which y can produce some 
VE C+. Then, for every QI, CY’E V*; u, w, W’E Z*, if 

(i) S 3R arAw +R cupyrr? 3R @VW 3 uvw, 
(ii) S $R CY’AW’ + c@yw’ 3R LY’/~vM*‘~ uvw’, 

(iii) w = w’(mod 7r), 

then ar = a’. (Proof omitted.) 

Since LR-regular grammars are unambiguous, the factorization of u in ulu2 sud 

that cy =% u, and /3 3 u2 is unique. Therefore, there are for each j at most m different 
i’s such tnat [A + p3y, i] is in Ij. q 

. For every unambiguous grammar, there exist constants c, d such that the 
number of quasi-complete items in each set Ij is at most c times the number of strongly 
incomplete items in lj plus d. 

. Since the number of items CTj are at most C, , and the 

er of quasi-co !ete items in is at most c2 times the number of complete 
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items in li, with c, and c2 some constants determined by the grammar, it is sufficient 
to prove that there exist constants c, d such that the number of complete items 

[A + (Y., i] in each set Ii with i <j is at most c times the number of strongly incomplete 

items in Ij plus d. 

The key to the proof lies in the fbllowing observation. 

Consider the items found in one executior, cc the do-part of the inner 
for-loop of the algorithm. Assume that exactly one complete item is found, and no 
strongly incomplete item. Assume further that this complete item is new and unequal 
to IS’-, S., 01. Then, in a following execution of the loop applied to this newly 
added item, there will be found at least one strongly incomplete item, or at least 
two complete items. 

Now let [A --* CY., i] be some complete item in I, with i <j, and let [A + CL, i]* 
denote the set containing [A + CL, i] and all items [B + p. y, k] in 1’ for which 

P 3 WA- Let ninrern;rl\ be the number of complete items different from [S’+ S., 0] 
in [A --) CL, i]* and nlcavcs be the number of strongly incomplete items or [S’-* S., 0] 
in [A + CL, i]*. Using the observation and the fact that for unambiguous grammars 
only new items are found, it can be proved by (structural) induction that ninlernals G 
4n lea\ CS -2. 

Because, for unambiguous grammars, two arbitrary sets [A + CL, i]*& and [A’+ 
(Y’., i’]* of items in 1, are either disjoint or one is contained in the other, a similar 
relation can be obtained for the union of such sets. The rest of the proof of Lemma 
4.8 is now straightforward. Cl 

. For ever? 
transitive items in each 

grammar, there 
set 1, is at most 

exists 
c. 

a constant c such that the number of 

Each set 1, contains for each non-terminal A at most one transitive item of 
the form [ +3., A, i]. Cl 

is 
From the 
linear as well. 

follows that the time performance for LR-regul ar gra mmars 

For every unambiguous grammar, the time and space complexities of 
Algorithm 1’ have the same order of magnitude. 

elementary test of the algorithm and each addition of an item or 
transitive item can, if efficiently implemented, be performed in time bounded by 

e constant (cf. ult to see that the number of 
nu 
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emaf . (1) Lemma 4.8 is not true for every ambiguous grammar. Not even 
for certain grammars whose degree of direct ambiguity is 1. For example, the 
grammar S + aS 1 aaS 1 h. has degree of direct ambiguity equal to 1, but for input 
an the number of quasi-complete items in I’ (j 2 1) is 2j (or 2j + 1 if we augment 
the grammar with a new start symbol), whereas the number of strongly incomp 
items in 4 is only 5. 

(2) The class of grammars for which Algorithm 1 runs in linear time properly 
includes the class of LR-regular grammars. There are (even infinitely) ambiguous 
grammars (e.g, grammar cl) below), as well as unambiguous grammars which are 
not LR-regular (e.g. grammar (2) below), for which our algorithm and Earley’s 
algorithm run in Einear time. 

(1) S+Sa 1 Saa 1 h. 

(2) sax 1 y. X+aXb 1 ab. Y+aYbb 1 h. 

Note that grammar (2) is not LR( n ) for any finite partition 7r of E*, and that no 
equivalent LR-regular grammar exists for it. (By the way, every unambiguous 
grammar is an LR( r) grammar with v the infinite partition {{w) 1 WE iE*}, and 
every LR( 7r) grammar with w some finite or intinite partition of C* is also unam- 
biguous.) Although we have not (yet) found a proof, we conjecture that Algorithm 
1 runs in linear time for every LR( 7r) grammar, with 7r some finite, but not necessarily 
regular, partition of C*. 

It is undecidable for an arbitrary grammar whether Algorithm 1 suns on it in 
linear time (or linear space). Algorithm 1 runs in linear time and linear space on 

S-, R,S 1 R2S 1 h. 

R, +x,R,dc’ 1 x,dc'. for 1 s i = m, x, E {a, b)‘, 

Rz + y,R,dc’ I y,dc’. for 1 s is m, yi E (a, b}‘, 

iff t( R,) n L( R,) = fl. Whether this intersection is empty is recursively unsolvable, 
since the Post Correspondence Problem is recursively unsolvable. 

. Conclusion 

Qur algorithm is of interest in that it makes lookahead unnecessary for obtaining 
a iinear time performance for parsing every LR( k) grammar. This does, however, 
not mean that lookahea has completely lost its valu as it may still lower the 

constant factors considerably, and for at Beast some am guous grammars even the 

order. 
We have not yet tested our 
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items which are not consistent with the next input symbol, we expect the algorithm 
to become really practical for various applications. A first version has been success- 
fully incorporated in a translator generator, which is used for the processing of 
natural as well as programming languages [ 10;. 

Acknowledgment 

I wish to thank C.H.A. Koster, H. Meijer, and A. Nijholt for valuable suggestions 
and fruitful conversations about the subject, and one of the referees for detailed 
comments. 

References 

[I] A.V. Aho and J.D. Ullman. The 7%eor\, oj’ Parsing, Translation, and Compiling, Vol. I: Parsing 

(Prentice Hall, Englewood Cliffs, NJ, 1972). 
[2] K. Culik 11 and R. Cohen, LR-regular grammars-an extension of LR( k 1 grammars, J. Compur. 

System Sci. 7 (1973) 66-96. 
[3] J. Earley, An efficient context-free parsing algorithm, Ph.D. Thesis, Carnegie Mellon University, 

Pittsburgh, PA, 1968. 
[4] J. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (2) (1970) 94-102. 
[S] S.L. Graham, M.A. Harrison and W.L. Rutzo, An improved context-free recognizer, ACM Trans. 

Progratttming Languages Systems 2 ( 1980) 415-462. 
[6] M.A. Harrison. lnrroducrion to Formal Language Theory (Addison-Wesley, Reading, MA, i978). 
[7] D. Hays, Automatic language-data processing, in: H. Borko, ed., Computer Applications in the 

Behacioral Sciences (Prentice Hall, Engewood Cli4s. NJ, 1962) 394-423. 
[8] T. Kasami, An efficient recognition and syntax analysis algorithm for context free languages, 

University of Illinois, 1966. 
[9] J.M.I.M. Leo, On the complexity of topdown backtrack parsers, in: hoc. NGI-SIONSymp., Utrecht, 

The Netherlands (1986) 343-35s. 
[IO] H. Meijer, Programmar: a transl.ltor generator, Ph.D. Thesis, University of Nijmegen, The 

Netherlands, 1986. 
[ 1 l] M. Tomita, E’cienr Parsing.for Nrlrural Languages (Kluwer, Hingham, MA, 1986). 
[I21 D.H. Younger, Recognition and parsing of context free languages in time nJ, Inform. and Control 

10 (1967) 189-208. 


