
Etymology

!28

Latin
Etymology
From con- (“with, together”) + pīlō (“ram down”).

Pronunciation
	•	(Classical) IPA(key): /komˈpiː.loː/, [kɔmˈpiː.ɫoː]

Verb
compīlō (present infinitive compīlāre, perfect active compīlāvī, supine
compīlātum); first conjugation

	1.	 I snatch together and carry off; plunder, pillage, rob, steal.

https://en.wiktionary.org/wiki/compilo#Latin

https://en.wiktionary.org/wiki/con-#Latin
https://en.wiktionary.org/wiki/pilo#Latin
https://en.wikipedia.org/wiki/Classical_Latin
https://en.wiktionary.org/wiki/Wiktionary:International_Phonetic_Alphabet
https://en.wiktionary.org/wiki/Appendix:Latin_pronunciation
https://en.wiktionary.org/wiki/compilare#Latin
https://en.wiktionary.org/wiki/compilavi#Latin
https://en.wiktionary.org/wiki/compilatum#Latin
https://en.wiktionary.org/wiki/Appendix:Latin_first_conjugation
https://en.wiktionary.org/wiki/snatch
https://en.wiktionary.org/wiki/carry
https://en.wiktionary.org/wiki/plunder
https://en.wiktionary.org/wiki/pillage
https://en.wiktionary.org/wiki/rob
https://en.wiktionary.org/wiki/steal
casiano
Verb
1. ram down - strike or drive against with a heavy impact; "ram the gate with a sledgehammer"; "pound on the door"
ram, pound
thrust - push forcefully; "He thrust his chin forward"
2. ram down - teach by drills and repetitionram down - teach by drills and repetition
beat in, drill in, hammer in
drill - teach by repetition

Dictionary

!29

English
Verb
compile (third-person singular simple present compiles, present participle compiling, simple past and
past participle compiled)

	1.	 (transitive) To put together; to assemble; to make by gathering things from various sources. Samuel

Johnson compiled one of the most influential dictionaries of the English language.

	2.	 (obsolete) To construct, build. quotations

	3.	 (transitive, programming) To use a compiler to process source code and produce executable code.

After I compile this program I'll run it and see if it works.

	4.	 (intransitive, programming) To be successfully processed by a compiler into executable code. There

must be an error in my source code because it won't compile.

	5.	 (obsolete, transitive) To contain or comprise. quotations

	6.	 (obsolete) To write; to compose.

https://en.wiktionary.org/wiki/compile

https://en.wiktionary.org/wiki/compiles#English
https://en.wiktionary.org/wiki/compiling#English
https://en.wiktionary.org/wiki/compiled#English
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/construct
https://en.wiktionary.org/wiki/build
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/compiler
https://en.wiktionary.org/wiki/Appendix:Glossary#intransitive
https://en.wiktionary.org/wiki/programming
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/Appendix:Glossary#transitive
https://en.wiktionary.org/wiki/contain
https://en.wiktionary.org/wiki/comprise
https://en.wiktionary.org/wiki/Appendix:Glossary#obsolete
https://en.wiktionary.org/wiki/write
https://en.wiktionary.org/wiki/compose

Etymology

!30

The first compiler was written by Grace Hopper, in 1952, for the A-0
System language. The term compiler was coined by Hopper.[1][2] The A-0
functioned more as a loader or linker than the modern notion of a compiler.

https://en.wikipedia.org/wiki/History_of_compiler_construction

https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/A-0_System
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-wikles1968-1
https://en.wikipedia.org/wiki/History_of_compiler_construction#cite_note-computerhistory.org-2
https://en.wikipedia.org/wiki/Linker_%28computing%29
casiano
The FORTRAN team led by John W. Backus at IBM introduced the first
commercially available compiler, in 1957, which took 18 person-years to create

casiano
John McCarthy developed Lisp in 1958 at MIT. "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I". Information Processing Language from 1955 or 1956, and already included many of the concepts, such as list-processing and recursion, which came to be used in Lisp.

Compiling = Translating

!31

High-Level
Language

compiler Low-Level
Language

A compiler translates high-level programs to low-level programs

Compiling = Translating

!32

C gcc X86

GCC translates C programs to object code for X86 (and other architectures)

Compiling = Translating

!33

Java javac JVM
bytecode

A Java compiler translates Java programs to bytecode instructions for Java Virtual Machine

Architecture: Multi-Pass Compiler

!34

Java Type Check JVM
bytecode

A modern compiler typically consists of sequence of stages or passes

Parse CodeGenOptimize

casiano
lexer

casiano

Intermediate Representations

!35

Java Type Check JVM
bytecode

A compiler is a composition of a series of translations between intermediate languages

Parse CodeGenOptimize
Abstract
Syntax

Tree

Annotated
AST

Transformed
AST

Compiler Components

!36

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax

Tree

Annotated
AST

Transformed
AST

Parser
•Reads in program text

•Checks that it complies with the syntactic rules of the language

•Produces an abstract syntax tree

•Represents the underlying (syntactic) structure of the program.

Compiler Components

!37

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax

Tree

Annotated
AST

Transformed
AST

Type checker
•Consumes an abstract syntax tree

•Checks that the program complies with the static semantic rules of the language

•Performs name analysis, relating uses of names to declarations of names

•Checks that the types of arguments of operations are consistent with their specification

Compiler Components

!38

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax

Tree

Annotated
AST

Transformed
AST

Optimizer
•Consumes a (typed) abstract syntax tree

•Applies transformations that improve the program in various dimensions

‣ execution time

‣ memory consumption

‣ energy consumption.

casiano
Constant folding,
Constant propagation,
…

Compiler Components

!39

Java Type Check JVM
bytecode

Parse CodeGenOptimize
Abstract
Syntax

Tree

Annotated
AST

Transformed
AST

Code generator
• Transforms abstract syntax tree to instructions for a particular computer architecture

• aka instruction selection

Register allocator
•Assigns physical registers to symbolic registers in the generated instructions

Back-EndFront-End

Compiler = Front-end + Back-End

!40

Java Type Check JVM
bytecode

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Parse CodeGenOptimizeAnnotated
AST

Back-EndFront-End

Compiler = Front-end + Back-End

!41

C Type Check X86Parse CodeGenOptimizeLLVM

A compiler can typically be divided in a front-end (analysis) and a back-end (synthesis)

Back-End

Front-End

Repurposing Back-End

!42

C Type Check

X86

Repurposing: reuse a back-end for a different source language

Parse

CodeGenOptimizeLLVM

Front-End

C++ Type CheckParse

Back-EndFront-End

Retargeting Compiler

!43

C Type Check X86

Retargeting: compile to different hardware architecture

Parse CodeGenOptimize

LLVM

Back-End

ArmCodeGenOptimize

Front-End

C++ Type CheckParse

What is a Compiler?

!44

Java Type Check JVM
bytecode

Parse CodeGenOptimize

Compiler Construction = Building Variants of Java?

A bunch of components for translating programs

Compiler
- translates high-level programs to machine code for a computer

Bytecode compiler
- generates code for a virtual machine

Just-in-time compiler
- defers (some aspects of) compilation to run time

Source-to-source compiler (transpiler)
- translate between high-level languages

Cross-compiler
- runs on different architecture than target architecture

Types of Compilers (1)

!45

Interpreter
- directly executes a program (although prior to execution program is

typically transformed)

Hardware compiler
- generate configuration for FPGA or integrated circuit

De-compiler
- translates from low-level language to high-level language

Types of Compilers (2)

!46

Why Compilers?

 47

- fetch data from memory

- store data in register

- perform basic operation on data in register

- fetch instruction from memory

- update the program counter

- etc.

Programming = Instructing Computer

!48

!49

"Computational thinking is the thought processes
involved in formulating a problem and expressing its
solution(s) in such a way that a computer—human or

machine—can effectively carry out."

Jeanette M. Wing. Computational Thinking Benefits Society.

In Social Issues in Computing. January 10, 2014.

http://socialissues.cs.toronto.edu/index.html

!50

Problem
Domain

Solution
Domain

Programming is expressing intent

!51

Intermediate
Language

linguistic abstraction | liNGˈgwistik abˈstrakSHən |

noun

1. a programming language construct that captures a programming design pattern
 the linguistic abstraction saved a lot of programming effort

 he introduced a linguistic abstraction for page navigation in web programming

2. the process of introducing linguistic abstractions
 linguistic abstraction for name binding removed the algorithmic encoding of name resolution

Problem
Domain

Solution
Domain

From Instructions to Expressions

!52

mov &a, &c
add &b, &c
mov &a, &t1
sub &b, &t1
and &t1,&c

Source: http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

c = a
c += b
t1 = a
t1 -= b
c &= t1

c = (a + b) & (a - b)

http://sites.google.com/site/arch1utep/home/course_outline/translating-complex-expressions-into-assembly-language-using-expression-trees

From Calling Conventions to Procedures

!53

f(e1)

calc:
 push eBP ; save old frame pointer
 mov eBP,eSP ; get new frame pointer
 sub eSP,localsize ; reserve place for locals
 .
 . ; perform calculations, leave result in AX
 .
 mov eSP,eBP ; free space for locals
 pop eBP ; restore old frame pointer
 ret paramsize ; free parameter space and return

push eAX ; pass some register result
push byte[eBP+20] ; pass some memory variable (FASM/TASM syntax)
push 3 ; pass some constant
call calc ; the returned result is now in eAX

def f(x)={ ... }

http://en.wikipedia.org/wiki/Calling_convention

function definition and call in Scala

http://en.wikipedia.org/wiki/FASM
http://en.wikipedia.org/wiki/TASM
http://en.wikipedia.org/wiki/Calling_convention
casiano
Due to the small number of architectural registers, the x86 calling conventions mostly pass arguments on the stack, while the return value (or a pointer to it) is
passed in a register.

From Malloc to Garbage Collection

!54

/* Allocate space for an array with ten elements of type int. */
int *ptr = (int*)malloc(10 * sizeof (int));
if (ptr == NULL) {
 /* Memory could not be allocated, the program
 should handle the error here as appropriate. */
} else {
 /* Allocation succeeded. Do something. */
 free(ptr); /* We are done with the int objects,
 and free the associated pointer. */
 ptr = NULL; /* The pointer must not be used again,
 unless re-assigned to using malloc again. */
}

http://en.wikipedia.org/wiki/Malloc

int [] = new int[10];
/* use it; gc will clean up (hopefully) */

http://en.wikipedia.org/wiki/Malloc

Linguistic Abstraction

!55

identify pattern

use new abstraction

language A language B
design abstraction

Compiler Automates Work of Programmer

!56

Problem
Domain

Solution
Domain

General-
Purpose

Language

CompilerProgrammer

Compilers for modern high-level languages

- Reduce the gap between problem domain and program

- Support programming in terms of computational

concepts instead of machine concepts

- Abstract from hardware architecture (portability)

- Protect against a range of common programming errors

Domain-Specific Languages

 57

- Systems programming

- Embedded software

- Web programming

- Enterprise software

- Database programming

- Distributed programming

- Data analytics

- ...

Domains of Computation

!58

Problem
Domain

Solution
Domain

General-
Purpose

Language

!59

Problem
Domain

Solution
Domain

General-
Purpose

Language

“A programming language is low level when its
programs require attention to the irrelevant”

Alan J. Perlis. Epigrams on Programming.
SIGPLAN Notices, 17(9):7-13, 1982.

!60

Solution
Domain

Problem
Domain

Domain-specific language (DSL)
noun

1. a programming language that provides notation, analysis,
verification, and optimization specialized to an application
domain

2. result of linguistic abstraction beyond general-purpose
computation

General-
Purpose

Language

Domain-
Specific

Language

Domain Analysis
- What are the features of the domain?

Language Design
- What are adequate linguistic abstractions?

- Coverage: can language express everything in the domain?

‣ often the domain is unbounded; language design is making choice what to cover

- Minimality: but not more

‣ allowing too much interferes with multi-purpose goal

Semantics
- What is the semantics of such definitions?

- How can we verify the correctness / consistency of language definitions?

Implementation
- How do we derive efficient language implementations from such definitions?

Evaluation
- Apply to new and existing languages to determine adequacy

Language Design Methodology

!61

!62

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

!63

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Making programming languages
is probably very expensive?

!64

General-
Purpose

Language

Making programming languages
is probably very expensive?

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Language
Design

Compiler +
Editor (IDE)

!65

Compiler +
Editor (IDE)

Meta-Linguistic Abstraction

Language
Design

General-
Purpose

Language

Declarative
Meta

Languages

Solution
Domain

Problem
Domain

General-
Purpose

Language

Domain-
Specific

Language

Language
Design

Applying compiler construction to the domain of compiler construction

!66

Compiler +
Editor (IDE)

Language
Design

General-
Purpose

Language

Declarative
Meta

Languages

Solution
Domain

Problem
Domain

General-
Purpose

Language

Language
Design

That also applies to the definition of (compilers for) general purpose languages

!67

Compiler +
Editor (IDE)

Language
Design

Declarative
Meta

Languages

!68

Language Workbench

Language Design

Syntax
Definition

Static
Semantics

Dynamic
Semantics

Transforms

Meta-DSLs

Compiler +
Editor (IDE)

Objective
- A workbench supporting design and implementation of programming languages

Approach
- Declarative multi-purpose domain-specific meta-languages

Meta-Languages
- Languages for defining languages

Domain-Specific
- Linguistic abstractions for domain of language definition (syntax, names, types, …)

Multi-Purpose
- Derivation of interpreters, compilers, rich editors, documentation, and verification from single

source

Declarative
- Focus on what not how; avoid bias to particular purpose in language definition

Declarative Language Definition

!70

Representation
- Standardized representation for <aspect> of programs

- Independent of specific object language

Specification Formalism
- Language-specific declarative rules

- Abstract from implementation concerns

Language-Independent Interpretation
- Formalism interpreted by language-independent algorithm

- Multiple interpretations for different purposes

- Reuse between implementations of different languages

Separation of Concerns

!71

